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ABSTRACT 

 

A design experiment where students in Grade 5 (11–12 years old) play the Color Run game 

constitutes the context for investigating how students can be introduced to informal hypothesis 

testing. The result outlines a three-step hypothetical learning trajectory on informal hypothesis 

testing. In the first step, students came to favor sample space reasoning over idiosyncratic 

reasoning when the sample space was changed between color runs. In the second and third steps, 

students used degrees of variation in the distribution of the mode across samples to infer whether 

an unknown sample space was uniform. Students’ reasoning disclosed the logic: the larger the 

variation, the greater the reason for rejecting a uniform sample space. 
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1. INTRODUCTION 

 

This study draws on the increased attention on how learning environments can be designed to 

support young students’ statistical reasoning (Ben-Zvi et al., 2018; Langrall et al., 2017). More 

specifically, it intends to contribute to the recognized need for further research to explore and 

characterize learning environments, which expose young students to situations that invite them to use 

informal methods in making statistical inferences (Makar & Rubin, 2009; Meletiou-Mavrotheris & 

Paparistodemou, 2015; Zieffler et al., 2008). 

Inferential statistics is an important topic in statistics courses for many disciplines (Sotos et al., 

2007). It is also a topic that has proved difficult to learn (Dolor & Noll, 2015; Krishnan & Idris, 2015) 

and many students enter introductory courses in statistics with misconceptions (Sotos et al., 2007). It is 

suggested that the learning of inferential statistics should start in the early years of schooling (Meletiou-

Mavrotheris & Paparistodemou, 2015), with instructional support that allows students to engage in 

inferential statistics informally. In other words, there is a need to understand more of how to elicit and 

develop students’ informal methods on inferential statistics to facilitate the learning of the formal 

methods (Makar & Rubin, 2009; Nilsson, 2020b). 

Hypothesis testing is a main method of inferential statistics. It is a complex method, and it has 

proved difficult for students or teachers to fully understand the formal theory of hypothesis testing 

(Dolor & Noll, 2015; Zieffler et al., 2008). Informal statistical inference has received increased attention 

in recent years and studies show both younger students’ difficulties and ability to make claims of a 

wider universe beyond data with informal methods (Langrall et al., 2017). However, studies usually 

take a relatively general perspective on informal statistical inference. There is less of detailed 

knowledge about the teaching and learning of informal statistical inference specific to hypothesis 

testing, that is, about informal hypothesis testing (Lee et al., 2010; Nilsson, 2020b). 

Another observation is that informal statistical inference is most often investigated in computer-

based learning environments, where students are offered the opportunity to easy produce and repeat 

samples and organize and analyze data with different forms of representations. However, there is a risk 

that the power of computers encourages technological “short-cuts”, that may create undesired habits or 

gaps in understanding (Langrall et al., 2017). There is a need for balanced use of the affordances in 

technologies (Rubin, 2007). On this account, the aim of the present study is to contribute to educational 
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research on informal hypothesis testing by investigating a hypothetical learning trajectory (Simon, 

1995) that takes departure from students’ practical experiences of chance and random variation. 

A design experiment (Cobb et al., 2003) in which students in Grade 5 (11–12 years old) play the 

Color Run activity constitutes the context of investigation. I provide details of the design experiment 

after presenting relevant research, defining informal hypothesis testing, and addressing the research 

question of the study. 

 

2. THEORETICAL BACKGROUND 

 

2.1.  HYPOTHESIS TESTING 

 

In hypothesis testing we make a guess about the value of a parameter and then we test this guess by 

looking at how likely an observed result would be if the guess were correct (Konold & Pollatsek, 2002). 

Zieffler et al. (2008) express the development of hypothesis testing reasoning as the ability to 

demonstrate an “understanding of a p-value as an indicator of how likely or surprising a sample result, 

or a result more extreme, is under a certain hypothesis, and the action of rejecting this hypothesis if the 

p-value is small enough” (p. 45). The guess about the parameter is formally the null hypothesis and is 

most often the assumption that there is no difference, for example, between outcomes in a population 

or between the effect of different treatments. Hence, the method of hypothesis testing centers around 

the relationship between the expected and the observed distribution of samples (Lee et al., 2010).  

 

2.2.  REASONING ABOUT VARIATION 

 

Drawing an inference on the relationship between the expected and the observed distribution of data 

requires an understanding of the role of the space of possible outcomes (the sample space) and random 

variation in the distribution of data (Dolor & Noll, 2015; Pratt et al., 2008) since, “if one has no prior 

expectation about what a result should be, then no result is unusual” (Thompson et al., 2007, p. 220). 

Students may recognize that variation should be expected but have difficulty knowing how much 

variability to expect (Biehler et al., 2018; Mooney et al., 2014). When faced with data, learners may 

argue that a sample provides complete information about the population (Ben-Zvi et al., 2012; Rubin 

et al., 1990), or that one should expect little or no variation in samples from a uniform distribution, even 

with a small sample size (Canada, 2006; Green, 1983; Watson & Kelly, 2004). On the contrary, if 

variation is stressed too much, students may believe that the sample provides no information about the 

population (Ben-Zvi et al., 2012). Shaughnessy and Ciancetta (2002) found that many students are 

willing to accept wide variation across several samples and maintain a belief that events are equally 

likely even with contrary visual and numerical evidence. However, if students have an incorrect model 

of the underlying probability distribution, it does not matter how good an understanding they have of 

random variation. For instance, in Nilsson (2007) students were exposed to non-uniform sample spaces, 

in the setting of a game, based on the total of two dice. When predicting the empirical distribution of 

possible totals, students initially confirmed the equiprobability bias (Lecoutre, 1992). It appeared, 

however, that the application of the equiprobability expectation was not based on any reflections that 

the number of ways in which each sum could be represented was different. When students noticed that 

different totals could appear in a different number of ways during the game, they turned to a non-

uniform expectation of how data should distribute over the totals of two dice.  

 

2.3.  REASONING ABOUT THE EXPECTED AND OBSERVED DISTRIBUTION OF DATA 

 

Students may find it difficult to consider sample variation in the connection between an expected 

distribution of samples and the underlying theoretical distribution (Van Dijke-Droogers et al., 2020). 

Ireland and Watson (2009) emphasize the use of relative frequency displays of data in helping students 

to make proper connections between expected and observed distributions of data. Using displays of 

relative frequencies, however, seems not to be easy or natural to many students. Lee et al. (2010), for 

instance, examined middle school students’ informal hypothesis testing in the setting of a computer-

simulated die-tossing experiment. The students coordinated their mental image of an expected 

distribution of data, based on an imagined (hypothesized) theoretical distribution, with an observed 
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distribution of data. Only a few students used the relative frequency table provided, to confirm or refute 

an imagined theoretical distribution. Instead, and like students in Nilsson (2020b), students attended to 

and compared absolute frequencies within samples. For instance, that one outcome appeared only a few 

times, compared to other outcomes in the sample, was used as a reason to refute that a computer-

simulated die was fair. In Nilsson (2020b) focus was on the mode; if an outcome was observed 

significantly more times than other outcomes in a sample, students inferred that the underlying, 

theoretical distribution was not uniform. 

 

2.4.  LEARNING WITH CONCRETE RANDOM GENERATORS 

 

The students are supposed to generate data with concrete random generators in the present study. 

Working practically with random experimentation provides students the opportunity to sense random 

behavior (Fischbein, 1975). However, when using concrete random generators, one needs to be alert to 

students’ tendency to appreciate contextual, material, and idiosyncratic explanations over statistical and 

data-centered reasons (Makar & Rubin, 2009; Meletiou-Mavrotheris & Paparistodemou, 2015; Watson 

et al., 2007). In Nilsson et al. (2018), students worked with a plastic bottle, like the one used in the 

present study (Figure, 1). Some students argued it matters how the bottle was shaken and turned around 

and other students argued that the order of how the different colors were put into the bottle would play 

a role. In Nilsson (2020b), however, students did not fall as much into contextual reasoning as in Nilsson 

et al. (2018), despite a similar bottle being used and students being at the same age. How can we 

understand this difference? In Nilsson et al. (2018) the students played with the same bottle in repeated 

games, whereas in Nilsson (2020b) the underlying sample space was changed between each game and 

visible on the game-board. The variation in sample space turned students’ attention to the contents of 

the bottles and supported them in privileging statistical reasoning. The present study follows the 

approach of Nilsson (2020b). 

 

2.5.  DEFINING INFORMAL HYPOTHESIS TESTING 

 

I adapt to the pragmatism theory of inferentialism (Brandom, 2000) as a background theory (Mason 

& Waywood, 1996) for conceptualizing teaching and learning in informal hypothesis testing. 

Inferentialism is a semantic theory of how people ascribe meaning to and develop an understanding of 

concepts. Inferentialism should not be confused with statistical inference, despite that inference is at 

the core in both cases. In statistical inference, inference refers to the act of making a claim beyond data. 

In inferentialism, inference refers to the act of distinguishing what follows from the applicability of a 

concept (a statement) and what it follows from.  

In inferentialism, rationality is defined in terms of reasons. Understanding involves having a grasp 

of reasons, driven by the peculiar force of striving for more acceptable and better reasons (Bakhurst, 

2011). For instance, when we make a claim beyond data, grasping the claim entails getting to grip with 

the conditions of its application. It is to know, in the practical sense of being able to distinguish, what 

follows from the applicability of the claim and what it follows from (Brandom, 2000). For the learning 

of statistics, this implies teaching where students are invited to make claims (take a stand) and are 

challenged to ask and give reasons for their claims, in explorative practices of experimenting with data, 

making connections, explaining, inferring, and generalizing (Bakker & Derry, 2011). 

In the formal method of hypothesis testing, we focus on a parameter value, such as the mean, of one 

outcome, out of two or more possible outcomes. On an ordinary die there are six outcomes, but in the 

formal method of hypothesis testing we are focusing on only one of these. For instance, if we want to 

use the method to decide whether a die is biased, we can look at how many sixes we obtain in a sample 

of 60 throws. The other five outcomes are not explicitly available or considered. We ask then, how 

likely the result we obtain would be, if the die was fair, that is, under the assumption of a parameter 

value of 1/6. We apply a formal method for calculating a p-value, which is, the probability of obtaining 

a certain result or a result more extreme, under the null hypothesis.  

In the present study, informal hypothesis testing is defined according to Lee et al. (2010) and 

Nilsson (2020b). This means that students are not supposed to focus on the simulated distribution of 

one outcome and of simulating or calculating a p-value according to this distribution. Instead, the focus 

is on how students use variations across samples to informally infer on how likely it is that a random 
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generator is uniform, and for the action of rejecting a random generator as uniform. For instance, in Lee 

et al. (2010) the students did not look at how a single outcome of a die was distributed across repeated 

samples. Instead, they were asked about whether the outcomes of a die were equiprobable or not. That 

is, the students were exposed to the distribution over all six outcomes and reasoned about whether a die 

was fair according to how often an outcome was observed, compared to the other outcomes. This is in 

line with Nilsson (2020b), who observed students being engaged in informal hypothesis testing, by 

comparing samples, drawn from uniform and non-uniform random generators. The study showed that 

students found a large variation between outcomes in a sample result as a reason to infer that the sample 

was drawn from a random generator with a non-uniform sample space. Another way students compared 

outcomes in Nilsson (2020b) was to look at the distribution of the mode (modal value) across samples. 

Students expected that, if the outcomes are equiprobable, each outcome should be obtained as the mode 

about as often in a series of samples. 

 

2.6.  RESEARCH QUESTION 

 

Given the need for research that explores and characterizes learning environments, which invite 

young students to use informal methods in making statistical inferences, the present study addresses the 

research question:  

How can students be introduced to use variations across samples to informally infer on how likely 

it is that a concrete random generator is uniform and for the action of rejecting a random generator 

as uniform? 

 

3. METHOD 

 

A design experiment (Cobb et al., 2003), where students in Grade 5 (11–12 years old) are playing 

the Color Run constituted the context for investigating a hypothetical learning trajectory (Simon, 1995; 

Simon & Tzur, 2004) on informal hypothesis testing, as an answer to the research question. A 

hypothetical learning trajectory consists of a learning goal for students, underlying learning processes, 

and the means (tasks, activities) used to support these processes and to achieve the learning goals. 

 

3.1.  THE RATIONALE OF THE DESIGN EXPERIMENT 

 

The conjectured end-goal of the design experiment was that students should demonstrate an ability 

to use variations across samples as reasons to informally infer on how likely it is that a concrete random 

generator is uniform, and for the action of rejecting a random generator as uniform. The tasks included 

were aligned with those suggested by Zieffler et al. (2008) for engaging students early in statistical 

inference by eliciting a judgment about which of two competing models or statements is more likely to 

be true. 

The tasks were designed by the investigator. Sara1, the class teacher, ran the lessons and was 

supposed to act as usual. The students were familiar with traditional textbook teaching in mathematics, 

mixed with elements of group work and whole-class discussions. The students had a minor experience 

of descriptive statistics and no experience of inferential statistics. The student had been taught on 

rational numbers and fractions. 

The hypothetical learning trajectory was structured over an instructional sequence of three lessons, 

each based on the Color Run (Nilsson, 2020b). Each lesson lasted for 60 minutes. It was one day 

between each lesson. 

 

Lesson 1 – Promoting sample-space reasoning by changing sample space in Color Run. Color 

Run is comprised of a bottle filled with marbles, and a gameboard. After shaking the bottle, the color 

of the marble that lies in the neck of the bottle is recorded. The color first recorded seven times wins 

the game. Three games were prepared in advance to Lesson 1 (Figure 1).  

 
1 Sara is a pseudonym for the teacher’s real name. 
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Each game was structured in three phases: predicting-playing-reflecting. First, the students were 

asked to predict their expectations of which color they thought would win and to provide reasons for 

their predictions. Second, the game was played. Third, the students were asked to reflect on the 

outcomes of the game, connecting back to their predictions. 

A principal idea of the variation theory is that we can only discern an aspect if we experience 

variation in that aspect (Runesson, 2006). Since the sample space was an aspect for students to discern, 

the sample space was changed among the three games. Color Run should also incite reflections on 

random variation. A long game would help students to discern the regularity of the sample space. The 

shorter the game, the greater the effect of chance. After playing the game of different durations when 

designing the game, it was decided to use a seven-step game board (Figure, 1). A list of reasons is to 

the left of Game 1. At the top of the list is “weight”, then “smooth” and at the bottom “luck, chance”. 

The row at the bottom of the three game-boards tells the colors—red to the left, yellow in the middle 

and blue to the right—and the number of each color in the bottle. At the very bottom, the number of 

votes from the students for each option is recorded. 

 

      
 

Figure 1. The transparent bottle and the three games, ordered from left to right.  

 

Lesson 2 – Comparing samples from the same random generator.  Lesson 2 was designed to 

support students to use variation between outcome frequencies across samples to infer on how likely it 

is that a random generator is uniform and for the action of rejecting a random generator as uniform. 

Eight bottles were prepared for Lesson 2: Seven with a uniform sample space of two red, yellow, and 

blue marbles and one with a non-uniform sample space of four blue, two red, and two yellow marbles. 

The shape of the bottles was the same as in Lesson 1. However, this time the bottles were covered. They 

were sprayed in black, with only a small transparent slip at the neck of the bottle. When the bottle was 

turned upside-down, it was possible to see only the color of one marble. 

Students were grouped in pairs. The students were told that seven bottles were fair and that it was 

more marbles of one of three colors in one bottle. The class referred to the unfair bottle as the bottle on 

steroids. To avoid reasoning on parameter estimation, the students were not told how many colors there 

were of each color in the bottles. Following the logic of hypothesis testing, the target of the learning 

trajectory was to decide on which of the bottles are on steroids, i.e., which of the bottles does not have 

a uniform sample space. The groups played Color Run eight times and were then asked to draw an 

inference of if they thought they had the bottle on steroids or not based on their eight games. The groups 

were not allowed to look at the other groups during the group work. 

In Lesson 1, each game was seven steps. The yellow color won all three times, even though there 

were fewer yellow marbles compared to red marbles in Game 2 and blue marbles in Game 3. To increase 

the chance that the bottle on steroids would stand out, but still maintain uncertainty, it was decided to 

extend the game board to ten steps. Since the games are still rather short, and there are only eight games, 

there is a relatively good chance for large variations. In Lesson 2, several groups also came to claim 

they had the bottle on steroids (see Table 1 below). Sara used the situation that several bottles were 

suggested as candidates for the bottle on steroids, to motivate further investigations in Lesson 3. 

 

Lesson 3 – Comparing samples from different random generators.  In Lesson 3, students were 

supposed to compare outcome frequencies from the different bottles, to find out the bottle with a non-
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uniform sample space, that is, with an unequal number of blue, red, and yellow marbles. The lesson 

was structured in four phases. First Sara handed out the game boards from Lesson 2 and asked the 

students to reflect on if they keep to their decision and explanation. Next, Sara gathered all groups in a 

whole-class discussion, where the class negotiated on candidates for bottles on steroids, by comparing 

the samplings from all eight bottles. In the third phase, the students were arranged into four larger 

groups, each given one of the four candidates. They received a copy of the eight games from Lesson 2 

and a blank game board to play eight new games with the bottle they were assigned. In the last fourth 

phase, the class compared the samplings, each of 16 samples (games), from the four bottles. They 

inferred on which bottle was on steroids. Sara also asked the students if they thought any other bottle 

was on steroids. With this question, she challenged the students further on what they consider enough 

variation for rejecting, or not rejecting, that a random generator is fair, that is, has a uniform sample 

space. 

 

3.2.  DATA COLLECTION AND ANALYSIS 

 

Data were collected using four cameras. One camera, capturing whole-class discussions, which was 

connected to a wireless microphone on the teacher. With this wireless microphone, the camera also 

recorded the teacher’s interaction with students during group work. The other three cameras were used 

for observing group work. The groups’ worksheets from Lessons 2 and 3 were also collected. 

The analysis followed the principle of an inferentialist analysis (Brandom, 2000; Nilsson, 2020a), 

in relation to the analysis of a hypothetical learning trajectory (Simon, 1995). This means that the 

analysis was focused on students’ reasoning and the instructional means that supported their reasoning. 

Inferentialism helps us understand that it is reasonable to assume that behavior and speech acts are 

rational in terms of reasons (Brandom, 2000). Hence, to understand and make sense of a claim, means 

to understand what the claim follows from, the reasons for the claim, and what follows from the claim, 

and how the claim is used as reasons for other claims. In the present case, I searched particularly for 

how students used and were supported to use, variation across samples to formulate informal reasons 

for inferring on how likely it was that a random generator was uniform, and for the action of rejecting 

a random generator as uniform. 

 

4. RESULTS 

 

The analysis resulted in a three-step hypothetical learning trajectory on informal hypothesis testing. 

Each step relates to the three subsequent lessons of the design experiment. 

 

4.1.  MOVING FROM MATERIAL REASONS TO SAMPLE SPACE REASONS 

 

To understand what to expect in the distribution of data, students needed to have an insight of the 

relationship between the underlying sample space and data distribution. Supporting students on this 

insight was the objective of the three games of Color Run in Lesson 1. However, what we see in Figure 

1 is that yellow won all games, despite the favor of red in Game 2 and blue in Game 3. Did this result 

ruin the objective of the three games? It did not! The game activity supported students to make the 

connection that, even if the number of favorable outcomes is beneficial for a color to win, it does not 

determine a game; the game is also a matter of chance. 

Material reasons were most evident in the prediction phase of Game 1 and in explaining the results 

of Game 2 and 3. When asking the students for their votes in Game 1, Sara held the bottle horizontally 

in front of the class. The students took notice of that a yellow marble was at the front of all marbles and 

used this as a reason for why yellow would have an advantage. Sara did not shake the bottle to challenge 

this idea. The result of Game 2 and 3 did not match the proportions of the sample spaces. Most students 

accepted this as being a matter of chance, but some gave material reasons like, “Yellow was at the 

front,” and “Maybe they are heavier, they look bigger.” Sara posted the suggestions on the whiteboard 

(Figure 1). When reflecting on the result of Game 1, Sara challenged the idea that yellow won, because 

it was at the front. She did this by shaking the bottle and showing it is impossible to tell which marble 

is at the front. After this practical confrontation, the class agreed on removing a color’s position in the 

bottle as a reason. 
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How then did the game support students’ ability to connect sample space and data, and to take into 

consideration random variation in this connection? In predicting the expected result of Game 1, 

connections between sample space, data, and random variation were articulated in terms of the idea that 

it does not matter which color to vote for. Mathew, voting on blue, explained, “I don’t know. One 

should pick one and it doesn’t matter which one.” After Game 1, several students also referred to luck 

as a reason when explaining why yellow won.  

In predicting Game 2 and 3 most students showed evidence of sample-space reasoning. Daniel, 

voting on red in Game 2, claimed, “It is most of them.” Similarly, Claire voiced, “I voted for blue, since 

they are most,” when predicting Game 3. From the video we see that Sara took time to make the students 

aware of how the sample space differed from the previous game(s). The variation in sample space 

between the bottles was also visible on the whiteboard at the front of the class (Figure, 1). These actions 

and features of the teaching were critical in supporting students to engage in sample-space reasoning. 

The relationship between Game 2 and 3 supported students to connect sample space and chance. 

For instance, several students explained the win of yellow in Game 2 as a matter of chance. And, even 

if Game 2 could support that it does not matter what color you vote for (everything is just a matter of 

chance) this did not happen. Instead, when predicting Game 3, most students again turned to the most 

favorable outcome to give a reason for why they voted for blue. When yellow again won, the same 

students referred to chance to give reasons for this result. 

 

4.2.  EXPECTING SMALL DEVIATIONS IN THE MODE FROM A UNIFORM SAMPLE 

SPACE 

 

Eight bottles were prepared for Lesson 2: Seven with a uniform sample space of two red, yellow, 

and blue marbles and one with a non-uniform sample space of four blue, two red, and two yellow 

marbles. In Lesson 2 the students should act as data detectives (Shaughnessy, 2007), to figure out which 

bottle was on steroids, i.e., which bottle had more marbles of one color. 

Sara began by asking the students to reflect on why most of them voted on red in Game 2 and on 

blue in Game 3 in the previous lesson. She did this to push on students’ ability to connect sample space, 

variation, and data distribution. Mathew showed evidence of the gambler’s fallacy, arguing, “I voted 

on blue in the last [game] also because I thought that, now that yellow had won two times, it might be 

not that probable it wins also the third time.” Even if other students had the same opinion as Mathew, 

most students articulated they voted on red in Game 2 and blue in Game 3, because it was more red 

marbles in Game 2 and more blue marbles in Game 3. Sara was neutral to all suggestions. Applying a 

non-evaluative attitude, she encouraged the student to shape their own understanding and to test and 

develop their understanding in the subsequent inquiry.  

Sara introduced the data-detective mission and the class talked about that a data-detective search 

for evidence in data. Each group was given a worksheet with eight games, each ten steps long. After 

playing the games, they were asked to decide if they thought they had the bottle on steroids or not and 

how certain they were (Appendix, 1). Three groups inferred they had the bottle on steroids and five 

inferred they did not (Table 1). Besides Group 4 and Group 5, all groups referred to the distribution of 

wins among the three outcomes in formulating reasons for their inference. Group 5 gave no reason. 

At first, Group 4 claimed they had the bottle on steroids, since red won most times and that the same 

color came in a row. The reason, “the same color came in a row” was probably grounded in a common 

perception of randomness. To many people, randomness is perceived as something irregular, as a mess. 

If the same outcome comes in a row, in a streak, it is perceived there is more to the situation than just 

randomness (Sun & Wang, 2010). After a while, Sara entered Group 4 and asked them how they could 

be surer than 50%. In the discussion with Sara, the group proposed to do further games. Sara handed 

out a new worksheet of game boards to the group and they run four new games before all groups were 

done. Blue won the two first games, then won yellow and last red. This observation made the students 

change their decision. They did not get enough time to write down their explanation but in the film, 

they made explicit that their reason for changing to not having the bottle on steroids was because the 

number of wins (the mode) across the samples was rather even between the colors as no color deviated 

strongly from the other colors across the 12 (8+4) samples. 

With small differences, all other groups followed the last line of reasoning from Group 4, regardless 

of whether they inferred they had the bottle on steroids or not. Their reasoning reflected hypothesis 
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testing in that it involved aspects of expectations, based on an idea of how the modes would distribute 

among the three colors if the sample space had been uniform: That is, if the sample space is uniform, it 

is expected that the data distribution is rather even, nothing stands out. 

Several groups thought they had the bottle on steroids. At the end of Lesson 2, Sara used this 

uncertainty to support reasoning on how to be surer. Laying the foundation of Lesson 3 Sara asked, 

“What can we do to be more sure?” Edvin suggested: 

 
Edvin: We look at the statistics on our papers [worksheets].  

Teacher: Yes! How can we do that? 

Edvin: We can look at which color won must times i.e., in total for the whole class and then… 

Teacher: So, if…I come up with, if we have six, three, two [posts 6/3/2 on the board] and then 

we have five, two and one [posts 5/2/1], then we compare and look [moving her hand 

between the two posts], is it how you are thinking? 

Edvin: And then can we find the one that have won, the color that has most, the group that 

has most of that color, and the other colors have a bit less wins, maybe two. 

 

From the statements, “Look at which color won most times” and “The group that has most of that 

color, and the other colors have a bit less wins, maybe two,” it appeared Edvin seemed to focus on 

comparing the proportion of wins between the samples from the different bottles. What strengthens this 

interpretation is that Edvin belonged to Group 6, the group using proportion language to argue why 

they claimed they had the bottle on steroids (Table 1). Sara then asked Nathalia in Group 4 to voice the 

idea they discussed: 

 
Nathalia: Test on a new paper, do a bit more [games] 

Sara: Yes, we talked about doing more rounds, if that could make us more sure. 

 

Above I discussed how Sara challenged Group 4 during the group work on how they could be surer 

of a decision. They developed the idea to produce more samples. By asking Nathalia, Sara wanted to 

make this idea explicit to the class, as a basis for Lesson 3. 

 

4.3.  THE LARGER THE VARIATION, THE GREATER THE REASON FOR REJECTING A 

UNIFORM SAMPLE SPACE 

 

Lesson 3 was designed to push further students’ ability to use variation in outcome frequencies 

across samples as data-based evidence for distinguishing a non-uniform random generator from uniform 

random generators and to see the need for more samples for increased certainty. To this end, the 

teaching should provide needs for further statistical investigations. Sara approached this need by 

showing the outcomes from Lesson 2 and pointing out that there is uncertainty about which bottle is on 

steroids because different groups believed they have that bottle (Table 1).  

 

Table 1. Responses from students’ worksheets 

 
Group Distribution 

of wins 

Decision Reasons Degree of 

certainty 

2 0R, 0Y, 8B Yes One color won all times 90% 

3 4R, 2Y, 2B Yes One color won most times 45% 

6 1R, 2Y, 5B Yes One color appeared so often and won five 

of eight times. 

60% 

1 3R, 2Y, 3B No It was even 60% 

4 4R, 1Y, 3B No The same color appeared several times in 

a row  

80% 

5 1R, 2Y, 5B No Don’t know 100% 

7 2R, 2Y, 4B No All colors won at least one time 10% 

8 2R, 5Y, 1B No All colors won at some point 50% 
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Sara handed out the worksheets from Lesson 2, asking the groups to discuss if they keep to their 

decision or want to change. Group 3 and 8 changed their decision after their discussions, which led to 

Group 2, 6, and 8 believing they had the bottle on steroids. Sara posted 2, 6, and 8 on the whiteboard, 

accompanied by the winning distributions (Figure 2). All three groups argued they had the bottle on 

steroids. In terms of informal hypothesis testing, the selection of the three candidates was based on the 

reason that the three outcomes (colors) are not likely to be equiprobable, because one outcome wins 

many more times compared to the other outcomes. The reason Group 3 changed their decision to not 

have the bottle on steroids followed a similar line of reasoning as the three other groups, with the aid 

of a comparison between the groups. Without any information about the samples from the other groups, 

Group 3 claimed, yet with a low degree of certainty, they had the bottle on steroids, due to the 

differences in mode frequencies across their samples. After being exposed to the samples from all 

groups, they saw that there were bottles that produced larger variation in mode frequencies. Based on 

this information, they made explicit the reason that they did not have the bottle on steroids because it is 

more likely one of the bottles with a larger variation in mode frequencies was on steroids. 

 

 
 

Figure 2. The four candidates of bottle on steroids 

 

Even if the variation in mode frequencies was largest with bottle 2, it was easy for Sara to motivate 

the need for more samples, to gain more information for their final decision on which bottle is on 

steroids. But, before the students were asked to generate more samples, Sara turned to Group 5. Group 

5 kept to the decision of not having the bottle on steroids. Sara knew they had a similar result as Groups 

6 and 8. She used this knowledge to challenge Group 5 and to motivate further investigations on also 

their bottle: 

 
Sara: Are there more groups where the same color won five times? Because I think, if we 

look at [Bottle] six and eight, this [pointing at “blue” for Bottle 6] won five times and 

this [pointing at “yellow” for Bottle 8] won five times and they think they have the 

bottle on steroids. Is there any other group where one color won five times? 

 

Group 5 answered that one of their colors won five times. Sara posted 5 on the whiteboard (Figure, 

2) and asked the group to explain why they think they do not have the bottle on steroids: 

 
Teo: Because it was different colors. First it was red who won and then yellow then blue, 

blue and the yellow.  

Sara: That it was not in a series? 

Teo: Yes. 

Sara: Okay, was it the same for you in Group 6 and 8 that the wins came in a series, or if did 

they also came irregularly? 

 

The reasoning of Group 5 follows the perception of randomness as irregular (Sun & Wang, 2010). 

The wins in both Group 6 and 8 did not either come in a row and Sara asked Group 5 if they think 

Groups 6 and 8 also do not have the bottle on steroids. Group 5 had no answer to that. When Sara asked 

Group 5, they agreed on including also Bottle 5 as a candidate for further investigations.  

(Doped bottle?) 

(Not doped ) 
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Sara arranged the class into four groups, each with one of the four candidates. Each group also 

received the game board of their bottle from Lesson 2 and a blank game board with eight games. After 

playing eight new games, the groups should then decide if their bottle was on steroids, based on all 16 

games (samples). 

Sara gathered the class into a whole-class discussion after all groups had inferred if their bottle was 

on steroids, based on their 16 samples. With Bottle 2, blue won 15 times and the students in this group 

agreed on that they had the bottle on steroids. Group 6 did not reach an agreement. The wins were 

distributed with nine on blue, four on red, and three on yellow. Some students articulated, “They came 

too scattered; the colors came too scattered” as a reason that their bottle was not on steroids. In Lesson 

2, the distribution of wins in Group 5 was the same as in Group 6. The same happened also in this new 

round of eight games. Hence, after the 16 games, Groups 5 and 6 had the same distribution of wins. 

The students, working with Bottle 5 agreed their bottle is not on steroids. Noted on the worksheet was, 

“If we compare with Bottle 2, our bottle is not on steroids.” Where this reason comes from is not clear 

since from the video, I cannot observe that Group 5 has information of Group 2’s last eight games. One 

way to make sense of their reasoning is that they apply what Noll and Shaughnessy (2012) refer to as 

additive reasoning. In other words, taking limited account of random variation, it seems as if they used 

the first eight games from Bottle 2 as a predictor of the second series of eight games.  

The 16 games of Bottle 8 turned out as, eight on yellow, six on red and two on blue. Denise argued, 

“I think it is not on steroids because it was a bit even but, I am not entirely sure because it was not very 

even.” On their worksheet the group claimed they had the bottle but was not very certain (50%). 

Unfortunately, it did not become clear if their decision is based on all 16 games or on only the last eight 

games. Nevertheless, their explanation on their worksheet, “It was quite even, but also not, about in the 

middle,” indicates that they would have been more certain with a larger difference in the number of 

times each color became the mode. In relation to hypothesis testing, they may have perceived the 

observed deviation as likely to be the result of chance. 

When the inferences from all groups had been made public, Sara asked the class to decide which 

bottle contained more of one color. Being aware of the 16 samples from all bottles, all students agreed 

on that Bottle 2 was the one on steroids. The inferences followed how Group 3 came to infer they had 

not the bottle on steroids in the introduction of Lesson 3. First, students noted that one of the colors win 

many more times than the other colors with Bottle 2. In general terms, it was noted that one outcome 

deviated strongly as the mode across samples from the same random generator. Second, the students 

noted that there was no outcome from the other bottles that stood out as the mode as strong as the blue 

marble did across the samples from Bottle 2. In more general terms: In the choice between two 

alternatives, the random generator that produces the largest difference in the distribution of the mode is 

chosen as non-uniform. 

Lesson 3 ended with Sara asking the students if they thought any other bottle was on steroids. She 

asked this to further challenge the students on what would be enough difference for rejecting that a 

random generator is uniform, in a series of 16 samples. Some students thought Bottle 5 and 6 were 

bottles on steroids, while some thought not. In both cases, the variation in mode frequencies was used 

as an indicator, i.e., as a reason. To some students, the variation was not large enough to reject the 

possibility that it was only an effect of chance. 

 

5. CONCLUDING DISCUSSION 

 

Inferential statistics is an important topic in statistics (Sotos et al., 2007), which has proved difficult 

to learn (Dolor & Noll, 2015; Krishnan & Idris, 2015). To facilitate the learning of formal inferential 

statistics it is suggested that the learning of inferential statistics should start in the early years of 

schooling (Meletiou-Mavrotheris & Paparistodemou, 2015), with instructional support that allows 

students to engage in inferential statistics informally (Makar & Rubin, 2009; Nilsson, 2020b). Drawing 

on this suggestion, the overall objective of the present study has been to contribute with knowledge of 

learning environments, which invite students to use informal methods of hypothesis testing. A design 

experiment (Cobb et al., 2003) with students in Grade 5 (11–12 years old) playing Color Run (Nilsson, 

2020b) constituted the context for the investigation of a hypothetical learning trajectory with the end 

goal of introducing students to use variations across samples as informal reasons to find out how likely 

it is that a concrete random generator is uniform, and the action of rejecting a random generator as 
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uniform if the variation is large enough (cf. Zieffler et al., 2008). I discuss the contributions of the study 

according to the three main steps of the hypothetical learning trajectory. 

The first step took form in Lesson 1. Here students were engaged in three games of Color Run 

(Nilsson, 2020b) with changing sample space between each game. The first step speaks to students’ 

tendency to emphasize idiosyncratic and material reasons. It concerns how the students came to favor 

sample space reasoning over idiosyncratic reasoning (Makar & Rubin, 2009; Meletiou-Mavrotheris & 

Paparistodemou, 2015; Watson et al., 2007) when the sample space was changed between color runs 

(Nilsson, 2020b). The study also shows how concrete random generators can help teachers to challenge 

idiosyncratic and material reasons. By shaking the bottle in front of the class, the teacher made the 

students aware that it will not matter in which order the marbles are placed before shaking the bottle.  

The student's account of sample-space reasoning challenges the equiprobability bias (Lecoutre, 

1992). In line with Nilsson (2007), students considered the composition of the sample space when 

predicting the outcome of the three games in Lesson 1. For instance, a color that was not the most 

represented in the sample space won Game 2. Such an observation may support the equiprobability 

bias, that everything is just a matter of chance. However, this did not happen. Instead, when predicting 

Game 3, most students again turned to the most favorable outcome to give a reason for the color they 

voted for to win. As in Nilsson (2020b), it seems as if the variation in the sample space between the 

games turned the students’ attention to the contents of the bottles and thus supported them in privileging 

the underlying probability distribution to give reasons for which color they expected to win. 

Previous research provides a rather good picture of students’ perceptions of variation (Biehler et 

al., 2018; Noll & Shaughnessy, 2012). We know that some students overestimate the probability of 

strongly deviating results (Van Dijke-Droogers et al., 2020) and that some students are willing to accept 

wide variation across samples (Shaughnessy & Ciancetta, 2002). The present study contributes with 

insights on how instruction can be designed to support students’ understanding of random variation and 

their ability to use variation across samples to infer on how likely it is that a random generator is 

uniform, and for the action of rejecting a random generator as uniform. The first step of the hypothetical 

learning trajectory sets the foundation for this ability. The second step concerns how students came to 

emphasize the mode, and how the mode was distributed across samples drawn from their own bottle, 

to infer on if the sample space of the bottle was uniform or not. A mode distribution with five of eight 

wins appeared as critical in the action of inferring whether a bottle was on steroids or not. Theoretically, 

the probability to obtain five, or a more extreme result, in a sample of eight observations, under the null 

hypotheses (=1/3), is about 0.087. The probability to obtain six or more is about 0.019. So, considering 

Bottle 2, 5, 6, and 8 as candidates of a bottle on steroids shows evidence of reasonable reflections on 

random variation under the null hypothesis.  

Understanding the role of sample size is key to understanding random variation (Lee et al., 2010). 

In Lesson 2, students generated a series of only eight games, each of ten steps. Eight samples were 

supposed to be a series long enough to obtain the bottle on steroids as one of the candidates for further 

investigations. It was also supposed to be a series short enough to obtain wide variations from bottles 

with a uniform sample space and so, include also uniform bottles as candidates for further 

investigations. The number of eight samples fulfilled its purpose. Several bottles were suggested as 

candidates to be the bottle on steroids and the teacher could use this uncertainty to engage students in 

discussions where students were engaged in reflecting on the need of collecting more samples. 

The third step of the hypothetical learning trajectory shows how a teacher can start with hypothesis 

testing in an informal way, without students first having a profound understanding of relative 

frequencies (Ireland & Watson, 2009) and of how data distributes under the null hypothesis in the long 

run. As observed in Nilsson (2020b), it seems natural to the students to look at absolute frequencies 

and, particularly, at the mode, which is, most likely, stimulated by the idea of “winning a game.” In 

Lessons 2 and 3, students show how they can learn to use variation in the distribution of the mode across 

samples to draw an inference on an unknown sample space. Their reasoning followed the logic: the 

larger the variation, the greater the reason for rejecting a uniform sample space. The third step adds a 

new dimension to the use of variations across samples compared to the second step. In the third step, 

the sample series from the different bottles took the role of a reference, like that of the theoretical, 

formal distribution under the null hypotheses. In other words, instead of comparing the outcomes only 

to what would be expected from a theoretical, uniform distribution (cf. Lee et al., 2010), the students 

compared the variations in the mode between the different bottles to strengthen their inferences. That 
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one color won many more times than the other colors from Bottle 2, compared to how the wins were 

distributed from the other bottles, was used as a reason to claim Bottle 2 was on steroids, i.e., contained 

a non-uniform sample space of colored marbles. Hence, it seems reasonable that the learning of informal 

hypothesis testing takes as its starting point the variation between absolute frequencies. In the ambition 

to develop the hypothetical learning trajectory, research should then take a close look at how teachers 

can support students to expand their reasoning about variation in and between data from absolute 

frequencies to relative frequencies and the law of large numbers (Ireland & Watson, 2009). 

To draw reasonable inferences of an underlying probability distribution, students need to evaluate 

and understand the role of sample size (Pratt et al., 2008). Findings from Lesson 3 add to how a teacher 

can help students to reflect on the role of increasing the number of samples, to infer on the underlying 

sample space. At first in Lesson 3, the between-bottle comparison was made based on only the first 

eight games, played in Lesson 2. Students noticed that there were sample series from some groups that 

displayed a larger variation in the mode. The teacher drew the students’ attention to these sample series 

and to the fact that there seems to be uncertainty about which bottle was doped. The teacher could use 

this uncertainty to motivate students to play eight more games with these candidates. The results of the 

16 samples strengthened the variation in mode between the bottles. After the 16 samples, all students 

were certain that Bottle 2 was on steroids. 

A final remark to be made concerns that some groups marked a certainty lower than 50%. From a 

subjective perspective on probability, we understand a claim on certainty as a claim on probability 

(Borovcnik et al., 1991) and, from such a perspective, the inference that the probability is 10% (Group 

7) implies the converse inference that the probability is 90% they are wrong and, consequently, that 

they are pretty sure they have the bottle on steroids. However, an alternative interpretation is that the 

students just mark how sure they are about their decision and, that they would be less sure about the 

alternative. Unfortunately, there was no more information on this issue since the tasks or the teacher 

did not challenge the student further on what a low certainty on a decision would imply for the 

alternative. On this account, I invite research to further investigate the meanings students ascribe to how 

certain they are when early engaged in drawing inferences in situations asking for hypothesis testing. 
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